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Abstract:

Aiming at the paucity of urban parcels in developing countries in general and China in
particular, this paper proposes a method to automatically identify and characterize parcels
(AICP) with ubiquitous available OpenStreetMap (OSM) and Points of Interest (POls).
Parcels are the basic spatial units for fine-scale urban modeling, urban studies, as well as
spatial planning. Conventional ways of identification and characterization of parcels rely on
remote sensing and field surveys, which are labor intensive and resource-consuming. Poorly
developed digital infrastructure, limited resources, and institutional barriers have all
hampered the gathering and application of parcel data in developing countries. Against this
backdrop, we employ OSM road networks to identify parcel geometries and POI data to
infer parcel characteristics. A vector-based CA model is adopted to select urban parcels. The
method is applied to the entire state of China and identifies 82,645 urban parcels in 297
cities.
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Introduction

Land parcel data are one of the cornerstones of contemporary urban planning (Cheng et al. 2006).
Using as an analytical tool, parcels are the basic spatial units of urban models, as for example the
latest urban simulation models are oftentimes vector-based and capture parcel-level dynamics
(Pinto 2012; Stevens and Dragicevic 2007). More importantly, normative planning and policies are
performed on parcels, ranging from devising master and detailed urban plans, to strategic plan
implementation, and to policy effects evaluation (Frank et al. 2006; Jabareen 2006; Alberti et al.
2007).

Whereas parcel data for the developed world are generated by robust digital infrastructure and
supplemented by open data initiatives (e.g., OpenStreetMap), researchers still lament the difficulty
of attaining parcel data for developing countries. For example, the best available parcel map for
China’s capital Beijing — supposedly one of the most technologically advanced and rapidly developing
cities in the erstwhile Third World — was dated in 2010 (Beijing Institute of City Planning 2010). In
addition, collecting parcel data in medium- and small- sized cities in China is constrained by poorly
developed digital infrastructures. That goes without saying that complete parcel-level features (e.g.,
land use type, urban functions, and development density) do not exist for many occasions. In
addition to hard infrastructures, soft institutions have also created barriers for Chinese urban
planners’ access to parcel maps. For instance, our interviews with 57 planning professionals’ reveal
that access to existing parcel maps held by local planning bureaus/institutes is extremely restrained,
as parcel maps are tagged as confidential within the current Chinese planning institutions. In
summary, parcel data for the developing world are oftentimes outdated, limited in geographical
scopes, and do not contain much necessary information other than basic parcel geometry. This
condition has limited the progress of quantitative urban studies, urban planning compilation as well
as urban management in developing countries in general and in China in particular.

As parcel data are moving towards the central stage of urban planning (Cheng et al. 2006), the lack
of parcel data for cities in the developing world would constrain our ability to trace urban changes at
high spatial-resolution, hinder the compilation and implementation of detailed urban plans, and rule
out the possibility of adopting contemporary parcel-based urban management. Built on manual
interpretation of remote sensing images and field surveys, conventional ways of generating parcel
data are time-consuming, expensive, and labor-intensive (Erickson et al 2013). Thus many
developing countries do not have the necessary capital and resources to produce parcel data in the
conventional fashion. Overcoming such “data desert” scenario seems to be of high priority for urban
planning in developing countries.

Against this backdrop, we propose a method for automatic identification and characterization of
parcels (AICP), based on freely-available Open Street Map (OSM) and crowd-sourced Point-of-
Interest (POI) data. The proposed method could (1) provide quick and robust delineation of land
parcels; and (2) generate a variety of parcel level attributes, allowing for the examination of urban
functions, development density and mixed land uses. We illustrate the usefulness of our method
with 297 cities in China. Drawing upon entirely on open data, the methods developed in this paper
can be easily extended to other cities in the developing world. The next section reviews progress in
obtaining parcel-level geometry and features, followed by an elaboration of methods and the case
study. We conclude with a discussion of the strength, limitations, as well as future applications of
our method.

! We have interviewed 57 planning professionals in China (23 of these 57 professionals are affiliated with research institutes
and universities; 21 with foreign planning/architect firms such as AEOCOM and Atkins; and 13 with domestic planning
institutes and firms). Professionals often rely on manual digitalization of land use maps (often in image format as vector
data files would not be released). This process is extremely time consuming and often produces land parcel maps of less
desirable quality.



Background

Parcel boundaries and their features are conventionally identified through manual interpretation of
high-resolution remote sensing images, topographic maps, building maps and field surveys. Manual
operations are resource and time consuming (for example, it would take an experienced operator 3-
5 hours to identify and infer land use for 35-50 urban parcels covering the area of one square
kilometers); producing inconsistent data (as data quality largely depends on the experience and
proficiency of individual practitioners); and not suitable for longitudinal updates and comparison.
Volatile urban development (e.g., gentrification and urban sprawl) in many developing countries has
also added difficulty to update existing parcel maps. Still, compiled parcels generally lack parcel level
information, such as density and land use mix. As a case in point, data about parcel density for
Beijing, China after 2010 could not be obtained, and are limited to the area within the sixth ring road
(approximately 13.8% of the whole Beijing Metropolitan Area).

Attempts have been made to identify automatically parcel geometrics. For example, Yuan et al.
(2012) proposed a raster-based approach for parcel delineation based taxi trajectories and POls.
However, Yuan et al. (2012) omitted road space in the delineation of parcels, the raster-based

nature of the method generates heavy computational burden, severely limiting the method’s
applicability to large geographical areas. Meanwhile, Aliagaet al. (2008) presented an algorithm for
interactively synthesizing parcel layouts for to-be-developed areas according to the structure of real-
world urban areas. This study is limited by the fact that it does not account for parcel characteristics,
and performs parcel subdivision within predefined blocks, instead of identifying blocks from the data.

In light of this situation, OSM has been proposed as a promising candidate for quick and robust
delineation of parcels (Haklay and Weber 2008; Ramm 2010). As one of the most successful
volunteered GIS projects, OSM provides street network data for a wide array of cities (Goodchild
2007; Sui 2008). Jokar Arsanjani et al. (2013a) predict that the data coverage and quality of OSM will
continue to be improved in the coming years. More specifically, OSM data quality in well-mapped
and oftentimes large cities is on par with that of topographic maps (Girres and Touya 2010; Haklay
2010; Over et al. 2010). The growth of OSM in developing countries has been encouraging, as the
volume of OSM data in China has experienced a nine-fold increase during 2007-2013 (Figure 1).

Several preliminary studies suggest that OSM road networks are useful in identifying urban
structures. For example, Hagenauer and Helbich (2012) extracted urban built-up areas from OSM,
and Jiang and Liu (2012) identified natural grouping of city blocks based on OSM data. Existing
analyses using OSM focus more on deriving universal laws and social physics (Jiang and Liu 2012)
rather than producing data products for urban planning and studies. In a similar vein, Jokar Arsanjani
et al. (2013b) identified land-use patterns for central Vienna, Austria (roughly 32 km?) using OSM.
Whereas Jokar Arsanjani et al. (2013b) introduced a volunteered geographic information based
approach to generate land-use patterns, their approach focuses on developed countries with high-
accuracy OSM data, could be extended to generate additional parcel features.

In addition to parcel geometries, planning practices also require parcel features such as urban
functions and development density. There is a rich literature on inferring land use from remote
sensing images (Kressler et al. 2001; Herold et al. 2002). However, as discussed previously, remote
sensing images are not suitable for large scale parcel-level analysis, due to inter alia data availability
and the sheer amount of resources required. Although some automatic or semi-auto techniques

have been developed to address urban land-use classification (Herold et al. 2002; Pacifici et al. 2009),
it is still difficult to identify certain land use types such as high-density residential areas and
commercial areas from remote sensing images. More importantly, remote-sensing based methods
often treat parcels as having homogenous land use types, and do not allow for quantitative analysis



of mixed land use. More recently, researchers have inferred human use of urban space with human
mobility data, such as smart card records (Long et al. 2013), mobile phone data (Soto and Frias-
Martinez 2011; Toole et al. 2012), and taxi trajectories (Liu et al 2012; Yuan et al. 2012).
Nevertheless, human mobility data are hard to obtain as they often involve privacy issues as well as
profit-seeking data holders (Beresford and Stajano, 2003). Such data paucity greatly undermines the
wide applicability of human-mobility based methods for large geographic regions.

To this end, we argue that online POI data provide an alternative data source for characterizing
parcels. The strength of POI data includes (1) containing sub-parcel level business information, which
could serve as proxies for land use and urban functions; (2) being freely available from online
mapping and cataloguing service providers; (3) having a nearly global coverage; and (4) having high
spatial (e.g., geo-coded business locations) and temporal (e.g., routinely updated by service
providers) resolutions. With all these advantages, it is surprising that few studies have tapped POI
data’s potential in characterizing parcel features.

Therefore, aiming to improve the identification and characterization of fine-scale urban land parcels,
we introduce an automatic process using open data. OSM data are used to identify and delineate
parcel geometries, while crowd-sourced POls are gathered to infer land use intensity, function, and
mixing at the parcel-level. We emphasize that our empirical framework is (1) fully automatic and
use open data, allowing for the incorporation of other data sources (e.g., taxi trajectories and mobile
phone data); (2) produce not only parcel geometry and land use types but also useful parcel-level
information such as land use mix; (3) is applicable to large geographic areas, while most previous
studies are limited to small areas; and (4) enables routine updates and free release of urban parcel
data for China.

Data and methods
Data

Administrative boundaries of Chinese cities

Our analysis focuses on a total of 654 cities in China (Figure 2)?, ranging across five administrative
levels: namely municipalities directly under the Central Government (MD, 4 cities), sub-provincial
cities (SPC, 15), other provincial capital cities (OPCC, 16), prefecture-level cities (PLC, 251), and
county-level cities (CLC, 368) (Ministry of Housing and Urban Development, MOHURD, 2013; see Ma,
2005 for more details about the Chinese administrative system). As a city proper in China contains
both rural and urban land uses, we narrow our analytical scope onto legally defined urban land
within city propers and use administrative boundaries of urban lands to carve out OSM and POl data
layers. In addition to administrative boundaries, we also gather information about total build-up
area of individual cities in 2012 (MOHURD, 2013), which will be used in the urban parcel
identification process.

OSM in China

OSM road networks for China were downloaded on October 5, 2013. We also gather the ordnance
survey map of China at the end of 2011 with detailed road networks to verify results produced by
OSM data. The OSM dataset contains 481,647 road segments (8.0% of that of the ordnance survey
map) of 825,382 kilometers (31.5% of the ordnance survey map). Furthermore, road networks in
OSM and the ordnance survey map are overlaid for a visual inspection of data quality (Figure 3).
Although capturing a portion of the ordnance survey data, OSM data cover most urban areas in

% Sansha in Hainan and Beitun in Xinjiang appearing in MOHURD (2013) were not included due to spatial data availability.
Taiwan was not included in all analysis and results in this paper.



China, especially large cities (Figure 3), and are potentially useful for identifying urban land parcels.
The implication of OSM data quality will be elaborated in the final section.

POIs

A total of 5,281,382 POls are gathered from and geocoded by business cataloging websites. The
initial twenty POI types are aggregated into eight more general groups (Table 1): Commercial sites
account for most POls, followed by business establishments, transportation facilities, and
government buildings. POls labeled as “others” are used in estimating land use density, but removed
from land use mix analysis as this type of POIs with mixed information are not well organized and
classified according to our review. We also employ manual checking of randomly sampled POls to
ensure the data quality. Our empirical framework is extensible in the sense that POl counts can be
replaced by other human activity measurements, ranging from the more conventional land use

cover derived from remote sensing images to ubiquitously available online check-in service data (e.g.,
Foursquares).

Other data

DMSP/OLS (1-km spatial resolution; Yang et al. 2013) and GLOBCOVER (300-m spatial resolution;
Bontemps 2009) remote sensing images are also obtained for model validation, as we will
benchmark parcels identified with our empirical framework with those identified from remote
sensing images, although the spatial scale varies between each other. In addition, manually
generated parcel data for Beijing is gathered from BICP.

Methods

Delineating parcel boundaries

The working definition of a parcel is a continuously built-up area bounded by roads. Identifying land
parcels and delineating road space are therefore dual problems. In other words, our approach
begins with the delineation of road space, and individual parcels are formed as polygons bounded by
roads.

The delineation of road space and parcels is performed as follows: (1) All OSM road data are merged
as line features in a single data layer; (2) individual road segments are trimmed with a threshold of
200m to remove hanging segments; (3) individual road segments are then extended on both ends
for 20m to connect adjacent but non-connected lines; (4) road space is generated as buffer zones
around road networks. A varying threshold ranging between 2-30 m is adopted for different road
types (e.g., surface condition, as well as different levels of roads); (5) parcels are delineated as the
space left when road space is removed (Figure 1); and (6) a final step involving overlaying parcel
polygons with administrative boundaries to determine whether individual parcels belong to a certain
administrative unit. Parameters used in these steps are determined pragmatically with topological
errors of OSM data in mind.

Calculating density for all parcels

We define land use density as the ratio between the counts of POls in/close to a parcel to the parcel
area’. We further standardized the density to range from 0 to 1 for better inter-city and intra-city
density comparison using the following equation: standardized density = log(raw)/log(max), where
raw and max correspond to density of individual parcels and the nation-wide maximum density
value®. We also note that other measures (e.g., online check-ins and floor area ratio) can substitute
POls and approximate the intensity of human activities.

® POIs within the buffered road space were accounted by their closest parcels in our experiment.
* The unit is the POI count per km?. For parcels with no POls, we assume a minimum density of 1 POI per km?.



Selecting urban parcels

The next step identifies urban parcels from all generated parcels. The total urban land of individual
cities was gathered from MOHURD (2013). We employ a vector-based constrained cellular automata
(CA) model to identify urban parcels in individual cities® (Zhang and Long, 2013). More specifically,
we use the CA model to predict possibility of being urban for individual parcels, and the total urban
land is used as constraints for aggregated amount of urban parcels.

In the CA model, each parcel is regarded as a cell in CA, and the cell status was 0 (urban) or 1 (non-
urban). The CA model essentially simulates the urban development. On the onset of the simulation,
all cells are set to be rural. During each step during the simulation, whether a parcel is converted to
“urban”, i.e., the probability of being urban, depends on two aspects (Li and Yeh, 2002): Firstly, the
proportion of neighboring parcels that are urban. In our empirical operationalization, the
neighborhood of a parcel includes all parcels within a 500 m radius; and secondly, individual parcels’
intrinsic attributes such as size, compactness, and the POls density. These three attributes are
combined using a logit function to influence individual parcels’ probability of being urban (Wu, 2002).
We then multiply the two aspects (neighborhood and intrinsic attributes) to determine whether the
final probability is over a predefined threshold. In other words, a parcel surrounded by many urban
parcels and with a high intrinsic probability would have more chance to be identified as an urban
parcel in the simulation. Figure 4 provides a visual illustration of our CA model, where the final
probability for being selected as an urban parcel for parcels A, B and Cis 0.6 (0.8*6/8), 0.3 (0.6*4/8),
and 0.225 (0.9*2/8) respectively. With a threshold of 0.5, the only parcel that would be selected as
urban in our simulation is parcel a. The model stops at the iteration when the total area of urban
parcels reaches total urban land.

For calibrating the weights for constraints, we conducted logistic regression on the existing parcels
manually prepared by planners in the city of Beijing (12,183 km?; Yanging and Miyun counties in the
Beijing Metropolitan Area are not included). Each parcel was regarded as a sample, and totally there
were 125,401 samples (among them 57,817 urban parcels). The whole precision of logistic
regression was 74.2%. The logistic regression results shown in Table 2 were applied in constrained
CA models for all cities in China®. Our constrained CA model was meanwhile used in Beijing for
model validation. The overall accuracy of 78.6% in terms of parcel count indicated the applicability
of our CA model in identifying urban parcels from all parcels generated in a city.

Inferring dominating urban function and land use mix for selected urban parcels

Urban function for individual parcels is identified by examining dominant POI types within the
parcels. A dominant POI type within a parcel is defined as the POI type that has accounted for more
than 50% of all POIs within the parcel. For example, if 31 out of 60 POls within a parcel are labeled as
“business establishment”, the urban function for that parcel will be assigned as “business”. Note
that not all parcels would have a dominant urban function.

As a supplement measurement for the dominating function, we computed a mix index to denote the
land use mixed degree (Frank et al. 2004). The mixed index (M) of a land parcel is calculated as M =-
sum(pi *In pi) (i=1, ..., n), where n denotes the number of POI types, and pi is the proportion of POI
type i among all POls in the parcel. This index has been used before to better understand evolving

® Each city has its own constrained CA model for identifying urban parcels.
® We admit the heterogeneity of weights in various cities, however we do not have existing parcels for other cities at the
time of this research.



travel mode choice and public health outcomes, as well to study changing senses of community
(Manaugh and Kreider2013).

Validation

Our parcel identification and characterization results are validated at two spatial levels: At a first
more fine spatial scale (i.e., parcel level), we compare the geometry and attributes of urban parcels
generated by our program with those identified manually in the conventional approach. Due to data
availability, this fine scale comparison is only performed for the city of Beijing (i.e., the
aforementioned BICP data). Since urban parcels for Beijing was collected in 2010 with a total urban
area of 1677.5 square kilometers, we re-ran the constrained CA model in Beijing using this total
number and regenerated urban parcels for Beijing’. In order to remedy the limited availability of
manually collected parcel data, we perform a second validation with full geographic coverage at the
aggregated level (i.e., regional level). In this second validation, we focus on the statistical
distribution of parcel geometries, and compare urban parcels identified from OSM and Ordnance
Survey maps. To ensure the comparability of urban parcels from different approaches, we use road
networks from the ordnance survey map (ORDNANCE) in place of OSM roads and re-run our
program to identify urban parcels. As Ordnance Survey data reports the actual roads, thus according
to our working definition of parcels, parcels generated with ORDNANCE data should correspond to
real-world parcels. In other words, parcels generated based on ORDNANCE data are used to
benchmark the validity of OSM-based product.

Additionally, as the errors in OSM-generated parcels may come from (1) errors in the raw OSM data;
and (2) errors in our empirical framework, we attempt to single out pitfalls in our empirical
framework and have cross-referenced ORDNANCE-based parcels with remote-sensing based parcels
to demonstrate the capability of our empirical framework (Appendix 1).

Results

Parcel characteristics

We ran the proposed constrained CA model in all 654 cities. Our method generates exceedingly
large parcels (i.e., individual parcels that would exceed the total urban area constraints) for cities
with limited OSM data. We adopt a pragmatic threshold of ten parcels and deem the 297 cities with
ten or more urban parcels as “successfully” processed by our algorithm (Figure 5). Due to the city’s
sheer size, Chongqing was the only MD-level city absent from this group of successfully processed
cities. All SPC cities, as well as half of the medium-to-small cities at the PLC and CLC levels have
result in more than ten urban parcels.

A total of 232,145 parcels are identified for these 297 cities (Figure 5), and 82,645 out of all
generated parcels are labeled as “urban”(total urban area 25,905 km?). The average number of
urban parcels for MD, SPC, OPCC, PLC and CLC cities are 1411, 407, 199, 79 and 26, respectively. As
discussed previously, cities with more population and higher administrative ranks (e.g., Beijing, the
national capital; Nanjing, a provincial capital; and Qingdao, a sub-provincial level city) tend to have
more detailed OSM road network and subsequently greater number of parcels.

For all urban parcels, we calculate (1) land use density; (2) urban function; and (3) land use mix
degree. Figure 6 illustrates the results for five representative cities. Density among parcels within a
city or across cities could be compared in terms of inferred and standardized density attributes.
Urban function and land use mix measurements point to substantive mixing of land use. More
specifically, 55,728 (67.3%) out of the 82,645 urban parcels have “dominant” urban functions (Figure

” The urban area of the city of Beijing was 1445.0 km? in 2012, which was still less than the aggregated results (1677.5 kmz)
using urban parcels in BICP. The data inconsistence between each other in China is not rare.

10



6), including 16,018 residential parcels, 16,381 commercial parcels, 18,351 firm parcels, and 10,018
government parcels. Moreover, the average land mix degree for all urban parcels in 297 cities is
approximately 0.66 (with a maximum of 1).

Parcel validation

For validation at the parcel level, Table 3 summarizes the comparison of parcels generated by our
approach and those contained in the BICP Beijing parcel data. Table 3 suggests that OSM-based
approach generally produce larger parcels, due to the lack of information about tertiary and more
detailed roads in the OSM dataset®. Nevertheless, the match degree (the total area of intersected
urban parcels in both data divided by the total area of OSM-based urban parcels) is 71.2%,
suggesting that both datasets largely capture the same geographic distribution of urban parcels and
land use activities. In addition, we decompose the city of Beijing into sub-regions bounded by major
ring roads, and calculate the proportion of parcels falling into individual sub-regions. The proportion
of parcels falling into sub-regions between ring roads is consistent across both datasets. We also
compare the size distribution of parcels, both of which are showing lognormal distribution with
similar mean values.

Furthermore, density and urban functions of OSM-based urban parcels in Beijing are compared with
other data sources. With the same OSM-generated parcel boundaries, we calculate development
density for individual parcels (a total of 7,130 parcelsg) based on (1) building information such as
floor area gathered from BICP for 2008; and (2) POI data, as building information is the common
data for inferring development density. The Pearson correlation coefficient between development
densities calculated in two different ways is 0.858, suggesting that ubiquitously available POI data
could be used as a proxy for urban density. As POI types and land use types in BICP data were not
totally aligned with each other, we limited our comparison to OSM parcels with a dominating
residence function and residential parcels in BICP. We overlaid residential parcels in OSM and BICP,
and the overlapping area is 211.5 km? (56.3%out of total 375.6km”* OSM-based residential parcels).
In other words, the parcel level validation suggests that, despite only using online open data, our
OSM-based approach often produce reasonably good approximations of data produced by and the
conventional manual method.

Validation at the aggregated regional level is performed by comparing urban parcels generated by
OSM and ORDNANCE in 297 cities where both datasets had included urban parcels (Table 4).
Although the Ordnance Survey data were representing road networks at the end of 2011, in order to
ensure comparability in terms of total parcel size, we use the 2012 total urban area in the parcel
identification CA model. Table 4 suggests that OSM-based approach tends to generate parcels of
larger size, again due to the relative sparseness of road networks in OSM data. The match degree
between urban land by OSM and ORDNANCE was 58.1%, calculated as the ratio of the area of
overlapping urban parcels to the area of all OSM-based urban parcels. When we disaggregated the
overlapping results in each city level, the ratio for MC, SPC and OPCC was around 70% and the ratio
for FLC and CLC was around 45%. This, following the comparison on road networks in both datasets
in Figure 2, further proved the data completeness of OSM in big cities was much better than that in
small cities in China.

8 Parcels by ORDNANCE in Beijing were similar with those by planners in BICP in terms of parcel size.
° Density for BICP parcels is calculated based on floor space rather than POI. Floor space information was limited to the
parcels within the six ring road of Beijing, which was used in comparison.
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Conclusions

Aiming at the paucity of parcel data in cities of the developing world, our study proposes a novel and
scalable empirical framework for the automatic identification and characterization of parcels using
ubiquitously available OSM and POls data. Our analysis represents a first attempt to use volunteered
GIS data to identify and characterize urban parcels in China. Empirical results also suggest that OSM
and POI could help to produce reasonably good approximation of parcels identified from
conventional methods, thus making our approach a useful supplement

More specifically, the contribution of this paper lies in the following aspects: Firstly, we proposed a
robust and straightforward approach to delineating parcels, identifying urban parcels, and
characterizing parcel features, using ubiquitously available OSM and POI data. Secondly, we employ
a novel approach that incorporates a vector-based cellular automata model into the identification of
urban parcels. Thirdly, our approach has been applied to hundreds of cities in China, and could
possibly be extended to generate parcel data for other developing countries. Our project is also part
of the Open Data Initiative, as all our data products are freely available from the Internet.

The final product of our project is a dataset containing fine scale urban parcels with detailed
features for 297 Chinese cities. This dataset can be applied to but not limited to the following
aspects: Firstly, the dataset can be updated periodically and provides parcel maps for urban planning
and studies in places where digital infrastructure development is weak. For example, official parcel
data for Beijing are generally updated every three years and our approach would enable updating on
a yearly basis to capture rapid growth in Chinese cities. Secondly, the dataset can serve as the base
for emerging vector-based urban modeling, e.g., vector-based cellular automata models and agent
based models (Stevens and Dragicevic 2007; Jjumba and Dragicevic, 2012). Urban parcels generated
by our approach would enable us to establish large-scale urban expansion models for large
geographical area (e.g., an entire nation) at parcel level. Such urban expansion models would open
up new avenue for fine-scale regional growth management but were technically not possible
without parcel data covering the same geographic extent. Our attempt to establish such parcel-level
national-scale urban expansion model will be reported in a related paper. Thirdly, parcel attributes
such as urban functions and land use intensity provide useful measurements for urban analysts to
examine inter alia quality of life, urban growth, and land use changes (Frank et al. 2010). Though our
dataset has been released for a very brief period of time, many planning and urban studies projected
have reported to explore and utilize our parcel data. In fact, our parcel dataset has been
downloaded more than 1500 times and received over 100 comments in its first week of release.
Previously planning professionals in China have less chance to access land use data at such fine
spatial scale. Fourthly, the generated parcels could be used as spatial units for incorporating other
ubiquitous and spatially referenced data, e.g. check-ins, photos, and mini-blogs, as well as human
mobility data like transportation smart card records, taxi trajectories and mobile phone traces. The
estimation of inferred urban function, density and land use mix would be improved by integration
different data sources.

Because the general limitations of using open data to study urban dynamics have been detailed
elsewhere (Liu et al. 2013; Sun et al. 2013), we will conclude by noting limitations and possible
future research avenues that are specific to our AICP framework. A first limitation of our approach is
that OSM road networks are relatively sparse in many cities and lead to unrealistic large urban
parcels. This deficiency is likely to be alleviated by the ever-increasing coverage and quality of OSM
data in China (Figure 1). Techniques for parcel subdivision would be an alternative solution for
generating more realistic urban parcels in small cities in China (Aliaga et al.2008). A second limitation
is related to the use of POIs for estimating land use density. Our current approach focuses on the
guantity rather than quality of individual POls (e.g., a large department store and a small
convenience store are treated equally). Possible improvements include the incorporation of online
check-in data (e.g., Foursquares, and SinaWeibo — a Chinese equivalent of Twitter), taxi trajectories,
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and transportation smart card records to supplement inferring land use intensity. Lastly, more
constraints like accessibilities to main roads and city centers, as well as exclusive development zones
are expected to introduce into the constrained CA model used for identifying urban parcels to
increase the overall identification precision.

kkk kkk

Parcel data generated from OSM and POls are freely available from the Beijing City Lab (Datal5,
http://longy.jimdo.com/data-released/) and visualized online at
(https://a.tiles.mapbox.com/v3/jianghaowang.gcnng3cg/page.html?secure=1#5/36.014/105.996).

It is worth noting that these online visualizations serve as crowd-source validations for our methods

(Fritz et al., 2012). Geometric and thematic errors of individual parcels are identified by data users
with local knowledge, and used to fine-tune our CA model.
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Table 1 POIs types and aggregated information

Type Abbreviation | Count
Commercial COM 2,573,862
sites

Business FIR 677,056
establishment

Transport TRA 561,236
facilities

Others OTH 534,357
Government GOV 468,794
Education EDU 285,438
Residence RES 167,598
communities

Green space GRE 13,041
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Table 2 Logistic regression results for the BICP parcels

Name Coefficient S.E, Sig.

ao 1.562 0.033 0.000
a; -0.234 0.003 0.000
a, 34.192 0.347 0.000
as 0.005 0 0.000
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Table 3 Comparison of selected urban parcels in BICP and OSM in Beijing (R=ring road)

Parcel

Average

Overlapped

Spatial distribution (in terms of area, km?)

Parcels . . Within | R2- | R3- R4- R5- Beyond
count size (ha) | with BICP R2 R3 R4 RS RE RG
1194.2 km2
OSM 7,130 17.2 (71.2%) 42.5 74.0 | 113.4 | 263.5 | 666.5 | 519.9
BICP 57,818 |29 - 48.6 69.7 | 99.8 | 229.5 | 687.9 | 544.4
OSM/BICP | 0.12 5.93 - 0.87 1.06 | 1.14 | 1.15 | 097 |0.95

20




Table 4 The comparison of urban parcels in OSM and ORDNANCE for 297 cities

Urban area Average .
Data (km?) Parcel count arcel/patch size Intersected with
:’ha) P ORDNANCE (km?)
OSM 25,905 82,645 31.3 15,053
ORDNANCE 25,670 260,098 10.0 -
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Figure 1 Increasing data volume in OSM-China (accessed on Oct 5, 2013; Unit: data points).
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Figure 2 Administrative boundaries of Chinese cities
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Figure 3 The comparison of roads in the OSM and ordnance map10
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Figure 4 Examples of identifying urban parcels using constrained CA. The black border indicates a
parcel’s neighborhood, and the number in brackets reflects the parcel’s intrinsic probability.
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Figure 5 All generated parcels and urban parcels in China (a, spatial distribution; b, the profile of
“successfully processed” cities)
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Figure 6 The generated parcels and their attributes in typical cities of China
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Appendix 1: Comparing urban parcels by the ordnance survey map
and other data sources

We derived parcel boundaries and selected urban parcels from road networks in the 2011 Ordnance
Survey (termed "ORDNANCE") in the whole China. Urban parcels in ORDNANCE were generated and
selected using the same parcel generation and selection methods like “OSM”. Among 1,184,524
parcels generated, we successfully selected 350,102 urban parcels in 627 cities in ORDNANCE (also
for the year of 2011).

Since we did not have fine-scale land use in the whole China, we compared the urban parcels in
ORDNANCE (limited to the 627 cities,) with the 300m-resolution urban area of China in GLOBCOVER
(Bontemps, 2009), and 1 km-resolution urban area of China from DMSP/OLS in 2008 (Yang et al.
2013), in terms of urban land distribution. Considering the data completeness of the ordnance
survey, we expected this would validate our methods for parcel generation and urban parcel
selection, while eliminating the data quality influence of OSM. As indicated by the comparison
results in Table a-1, an average urban parcel was around 300 m * 400 m, which was much smaller
than a patch in GLOBCOVER or DMSP/OLS thus providing more details in the urban spatial
distribution map. There were 21,553 km” urban lands in ORDNANCE (54.2%) intersected with those
of DMSP/OLS. If assuming road spaces not accounted in ORDNANCE were all covered by DMSP/OLS,
the intersected ratio would increase to 60.0%. In addition, the time gap between ORDNANCE and
DMSP/OLS, in some degree, underestimated the intersected ratio, which might also be hampered by
the inconsistent of spatial resolution of two datasets. In this regard, our methods for generating
parcels and selecting urban parcels produce reasonably good results for Chinese cities according to
the aforementioned evaluation.

Table a-1 The comparison of urban parcels/patches in various data for 627 cities

Spatial Urban Parcel/patch Average Intersected with
Data Year resolution area count parcel/patch ORDNANCE
(km?) size (ha) (km?)
ORDNANCE | 2011 | - 39746 350102 13.0 -
DMSP/OLS | 2008 | 300 m 44720 1293 3458.6 21553
GLOBCOVER | 2009 | 1 km 39389 12515 314.7 15206

We also found the comparison results between ORDNANCE and GLOBCOVER were not as promising
as between ORDNANCE and DMSP/OLS, which might be raised from the inconsistence between
DMSP/OLS and GLOBCOVER. The intersected area of the two datasets was 19,501 km?, 49.5% of
urban area in GLOBCOVER and 43.6% of urban area in DMSP/OLS. Note that when we directly
compared urban parcels in OSM with DMSP/OLS, the overlap ratio was 61.4% (underestimated by
road space and the time lag as discussed in the previous paragraph), slightly larger than that
between ORDNANCE and DMSP/OLS.
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Appendix: The city list with selected urban parcels
(Order by the urban parcel count)

City name | City level | Parcel count | Urban parcel count | City area (kmz) Urban land area (kmz)
L . ZXS 13253 13148 4931 2391
Shanghai
jt..’.?‘ ZXS 13184 7127 11713 1229
Beijing
I
Shenghen FSJ 4195 3686 1837 734
KR 7XS 5732 2641 6816 614
Tianjin
B FSJ 5432 2200 8284 687
Wuhan
j(.ﬁ: FSJ 2974 1806 2344 325
Dalian
E‘&jf‘?‘ FSJ 3283 1673 4595 551
Nanjing
7L FSJ 2922 1613 3329 388
Shenyang
oM FSJ 3091 1584 3198 558
Guangzhou
Bt FSJ 2483 1516 3182 340
Hangzhou
o 1Ly DJS 5124 1356 3677 121
BRilg DJS 1541 1347 1207 319
[iif73 FSJ 2323 1312 3534 271
K& FSJ 2043 1276 3562 355
Hi FSJ 1814 1254 2934 312
R FSJ 1895 1253 2164 431
Kb SH 1143 1137 320 228
= SH 1787 1129 481 182
JZ 1] FSJ 1996 1004 1391 229
VN DJS 1951 988 1756 137
B8 AT SH 1878 974 16745 320
T FSJ 1424 929 2268 288
HBM SH 1482 893 1004 285
o DJS 1759 859 1556 237
I T DJS 1948 757 1654 162
T DJS 1411 750 4530 375
VEE4ER SH 1027 726 301 184
Bl DJS 1817 713 1540 86
i) FSJ 1083 654 3009 318
=) SH 631 614 1707 165
KR SH 881 552 1409 239
IS T A SH 1289 527 2022 182
W IRV FSJ 93] 516 7050 322
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City name | City level | Parcel count | Urban parcel count | City area (kmz) Urban land area (kmz)
J& i DJS 958 501 369 122
£,k DJS 1070 490 2225 163
W& DJS 815 479 2582 233
MBS DJS 504 479 1947 187
EaN| SH 767 358 2162 102
S DJS 572 316 962 89
it DJS 762 302 1767 152
1% FH DIS 305 293 442 154
ALl DJS 604 284 828 132
M DJS 650 281 2587 185
R DJS 673 279 3257 164
I 4 DJS 392 256 378 103
KH XJS 589 250 1490 34
#l DJS 356 246 608 131
SilEALl DJS 450 238 1362 59
HE DJS 255 238 4146 107

REE DJS 382 237 378 84
e DJS 520 231 3637 33
X 5 XJS 474 229 1057 80
H i DJS 383 224 1799 82
M DJS 469 222 2244 108
Dy SH 470 218 2374 186
FER DJS 315 209 517 48
HEZ DIS 457 208 3172 188
[l DIS 315 205 319 65

5 R % iy DJS 352 204 2175 135
= XJS 577 202 1142 22
[RpAN DJS 308 195 1275 17
=i DJS 455 193 1841 29
45 DJS 329 192 1572 96
NP DJS 201 190 578 51
M XJS 235 189 3267 25
T SH 326 181 6490 202
b DJS 267 181 1527 130
B SH 446 178 1568 116
YT DJS 409 178 1048 103
LA XJS 588 177 937 43

STl DJS 335 177 1358 53
17 M DJS 316 175 2357 55
1 XJS 355 173 1049 22
e DJS 185 173 3654 81
[E2ptil DJS 341 171 1869 172
i 2 XJS 350 163 1194 73
M DJS 300 163 1520 80
i DJS 356 161 2935 200
ey DJS 306 160 733 26
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City name | City level | Parcel count | Urban parcel count | City area (kmz) Urban land area (kmz)
=il XJS 475 158 3074 25
ity N XJS 638 157 1029 9
RE DJS 288 156 2694 95

i LI AK DJS 269 153 8924 49
5B DJS 215 150 1020 76
g DJS 149 145 288 84
T DJS 160 141 1355 81
X XJS 346 140 1840 38
b DJS 270 140 3603 94
f=qn DJS 190 136 501 94
G DJS 227 135 3000 190
WA XJS 212 131 94 46
1 DJS 238 130 2260 34
Y DJS 236 130 2027 101
R FH DJS 195 128 1943 104
el DIS 135 127 254 82
{5 BH DJS 360 126 3639 67

B XJS 130 124 325 37
yAN| XJS 227 122 868 38
200 XJS 628 119 7924 12
LRl DJS 214 115 5180 19
B DJS 162 115 418 62
RN DJS 220 113 6181 31
e DJS 174 112 14553 21
FERR DJS 145 110 562 56

JE IR #) XJS 315 107 8561 58
]It DJS 237 107 5014 42
KFE XJS 186 102 2300 16

5 22 iERE XJS 234 101 752 41
M| DJS 116 101 1587 53
3 Ik XJS 231 100 1703 8
I+ XJS 227 99 1629 32
JER Y DJS 176 98 965 61

T DJS 105 98 1363 69
NS XJS 203 97 2264 29
FIRA XJS 161 97 137357 27
KA DJS 245 96 2041 98
I DJS 203 96 1697 81
Rt XJS 223 95 2247 26
K DIS 162 94 3842 30
ZRFH XJS 275 93 1620 31
RS XJS 239 93 705 23
oy XJS 102 91 1618 29
e XJS 142 87 128 32
el il DJS 138 87 1500 51
EN] XIS 289 86 14365 16
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City name | City level | Parcel count | Urban parcel count | City area (kmz) Urban land area (kmz)
L DJS 133 86 567 95
&5 DJS 129 86 1230 33
5 DJS 129 85 1543 49
3 XJS 185 83 1185 23
HE XJS 158 83 27759 17
% H XJS 115 83 2222 20
&g DJS 185 82 2027 64
WG % XJS 272 79 85978 35
17K DJS 166 78 581 36
& [ XJS 306 76 1789 22
Wy &5 XJS 154 76 1999 15
UBfe 1] XJS 143 76 1762 32
il XJS 295 75 917 48
E{apun XJS 113 75 1404 27
7K DIS 206 72 1182 30
P8 XJS 278 71 518 18

=g XJS 155 71 16921 16
pacyii XJS 109 71 4539 30
it & XJS 133 70 807 24
A DJS 82 70 648 54

[SEIES XJS 99 69 12775 14
B| i3 DJS 94 68 284 57
B XJS 264 67 9199 43
wE XJS 203 66 2310 32
it XJS 151 65 7427 22
i o DJS 118 65 1626 56
JEH DJS 228 64 512 60
M4k XJS 196 64 2366 29
Z2fk, XJS 89 64 1217 28
YR DJS 71 64 231 39
WA XJS 107 62 5495 21

UEH K DJS 94 62 102 49
el DJS 153 61 1290 47
[1EpieN DJS 68 61 2768 19

£ T XJS 99 60 556 27
PN XJS 158 59 644 39
=i XJS 103 59 1938 21
T XJS 130 58 682 30
HH DIS 179 57 1928 46
prail XJS 72 57 3084 23
] XJS 243 56 964 20
TG XJS 125 56 2931 19
T M DJS 113 56 2923 57
5795 XJS 84 56 17507 16
7 XJS 73 56 2732 25
Ze Rt XJS 206 55 1403 20

22




City name | City level | Parcel count | Urban parcel count | City area (kmz) Urban land area (kmz)

3R XJS 117 54 8993 19
HRITHE XJS 105 54 1225 29
e it XJS 156 53 1341 15
TRl XJS 156 53 1577 38
T X DJS 80 53 411 28
R DJS 158 52 975 33
K DJS 101 52 3183 50
FHIT I XJS 60 52 3129 23
KxEO DJS 108 50 802 82
ZEif XJS 82 50 1231 26
LS LR XJS 60 50 15730 41
Frf XJS 165 49 27987 19
7k BH XJS 146 49 908 24
t DJS 131 49 877 46
BN DJS 127 49 3494 77
% DJS 122 49 1102 18
I BH XJS 107 49 1814 24
FIH XJS 459 48 56415 29
B XJS 165 48 851 23
G XJS 150 48 1324 19
& DJS 69 48 99 63
IR DJS 56 48 256 60
NG XJS 229 47 3551 35
Bl 25 XJS 100 47 1771 48
Il %2 XJS 84 47 3101 12
T e XJS 222 46 2144 23
KR XJS 180 46 1050 30
SYE) XJS 74 46 1700 22
TSP DJS 69 46 2244 27
H DJS 61 46 3821 34
B DJS 116 45 4558 74
L E XJS 95 45 2385 19
g XJS 82 45 893 30
1 XJS 135 44 1180 19
A DJS 105 44 4101 22
g DJS 92 44 2722 68
2 FH XJS 75 44 2125 14
B XJS 71 44 2046 37
SV XJS 71 44 1572 27
Rk DJS 65 44 164 40
AEFH DJS 62 44 314 53
6 XJS 186 43 2179 34
KK DIS 148 43 5903 46
1ty XJS 49 43 5136 11
T XJS 48 43 7314 9
EEPAN DJS 78 42 157 54

23




City name | City level | Parcel count | Urban parcel count | City area (kmz) Urban land area (kmz)
] XJS 169 41 129303 18
RS DJS 147 41 6994 39
il XJS 135 41 5607 30
IEER XJS 124 41 1154 31
N FIE XJS 66 41 4192 24
M XJS 91 40 2627 14
ipas XJS 90 40 2200 38
KA ET 7 XJS 77 40 766 11
SEFH XJS 72 40 1683 38
T3, XJS 68 40 1063 27
J= 3] XJS 191 39 3743 32
eh DJS 112 39 2676 36
T XJS 67 39 1215 33
J2 XJS 103 38 1279 41
M XJS 90 38 1533 40
BT XJS 72 38 1574 32
Giban XJS 60 38 6270 17
FNLE DJS 45 38 979 20
I 5 XJS 43 38 1578 24
IR XJS 142 37 17493 15
H M XJS 106 37 2002 65
ALRH XJS 67 37 3268 35
i XJS 56 37 968 28
K XJS 163 36 4923 15
I XJS 175 35 2719 28
M XJS 108 35 824 16
T XJS 102 35 1877 12
A 4 XJS 52 35 1452 20
EH XJS 41 35 1540 14
BUR 4 XJS 116 34 28574 9
Rk XJS 80 34 1367 41
HARH DJS 52 34 122 41
i P A XJS 128 33 18550 12
VY2 XJS 85 33 1200 26
fifi = XJS 65 33 1719 18
& DJS 45 33 121 23
X DJS 57 32 315 54
NEEIK DJS 51 32 2284 32
BT XJS 48 32 850 8
] XJS 50 31 574 37
e XJS 102 30 1441 26
B XJS 61 30 4541 15
AR XJS 146 29 9002 15
W FH XJS 86 29 4974 33
VY-~ DJS 62 28 421 47
JE SR XJS 193 27 615 16
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City name | City level | Parcel count | Urban parcel count | City area (kmz) Urban land area (kmz)
T sk XJS 95 27 1860 30
W XJS 42 27 2136 35
= XJS 36 27 1330 28
=} XJS 95 26 611 17
FH S5 DJS 69 26 652 38
KR XIS 45 26 678 21
B XJS 37 26 9811 9
i DJS 30 26 122 59
A XJS 165 25 2768 30
il XJS 92 25 1571 28
WYL DIS 61 25 1585 41
il XJS 41 25 2518 36
e XJS 90 24 2269 9
I DJS 47 24 101 27
1k XJS 46 24 1436 26
T B XJS 31 24 663 13
%5 XJS 29 23 3284 12
R XJS 139 22 3706 11
A7 XJS 100 22 1355 20
B XJS 93 22 3307 22
AR XJS 63 22 19949 11
(7] XJS 59 22 6042 16
K6 DIS 48 22 355 48
KI7 XJS 113 21 2294 19
E 1 DIS 76 21 3710 15
FAE XJS 38 21 936 26
M XJS 32 21 1127 23
I = XJS 29 21 117 25
B XJS 87 20 793 16
B 7 XJS 70 20 21194 32
W £ XJS 41 20 706 34
2 It DJS 38 20 1682 30
Z X XJS 32 20 943 19
JLX XJS 31 20 1011 27
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