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Abstract—Traffic speed prediction is a long-standing and « How to model the abrupt changes of traffic speeds in case

critically important topic in the area of Intelligent Trans portation of emerging events such as morning peaks and traffic
Systems (ITS). Recent years have witnessed the encouraging accidents?

potentials of deep neural networks for real-life applicatbns
of various domains. Traffic speed prediction, however, is #t These indeed motivate our study. Specifically, in this paper
in its initial stage without making full use of spatio-tempaal e propose a deep learning method using an Error-feedback

traffic information. In light of this, in this paper, we propo s  po .\ rrant Convolutional Neural Network (eRCNN) for contin
a deep learning method with an Error-feedback Recurrent

Convolutional Neural Network structure (€RCNN) for continuous  U0US traffic speed prediction. The novel contributions of ou
traffic speed prediction. By integrating the spatio-tempoal traffic ~ Study are summarized as follows.

speeds of contiguous road segments as an input matrix, e(RCNN  First, we take the matrix containing the spatio-temporal
explicitly leverages the implicit correlations among neaby seg- traffic speeds of contiguous road segments as the input of
ments to improve the predictive accuracy. By further introducing . . . . .
separate error feedback neurons to the recurrent layer, eRGN E€RCNN. By this means, the complicated interactions of waffi
learns from prediction errors so as to meet predictive chaktnges Speeds among nearby road segments can be captured by
rising from abrupt traffic events such as morning peaks and eRCNN naturally without elaborative characterizationjckh
traffic accidents. Extensive experiments on real-life spekdata s crucial to the high-accuracy prediction of eRCNN.

of taxis running on the 2nd and 3rd ring roads of Beijing Second. we introduce separate error-feedback neurons to
city demonstrate the strong predictive power of eRCNN in » We | uce sep urons

comparison to some state-of-the-art competitors. The nessity the recurrent layer of eRCNN, for the purpose of capturing
of weight pre-training using a transfer learning notion hasalso the prediction errors from the output layer. This empowers

been_ testified. More interestingly, we design a novel influeme eRCNN the ability to model the abrupt changes in traffic
function based on the deep leaming model, and showcase how t gheads due to some emerging traffic events like the morning
leverage it to recognize the congestion sources of the ringpads . .
in Beijing. peaks and traffic accidents.
Third, we put forward a novel weight pre-training method,
|. INTRODUCTION which adopts a transfer-learning notion by clustering kEimi
Traffic speed prediction, as a sub-direction of traffic prediyet contiguous road segments into a group for the generation
tion in the area of Intelligent Transportation Systems I Fas of a same set of initial weights. This “sharing scheme” not
long been regarded as a critically important way for deaisi®nly helps to reduce the learning process of eRCNN for every
making in transportation navigation, travel schedulingd a road segment, but also improves the chance of finding better
traffic management. Traditional models, including autoesg optimal solutions.
sion methods [1] and supervised learning methods such aginally, we design a novel influence function based on
support vector regression [2] and artificial neural netwd®, the deep learning model, and illustrate how to leverage it to
all treat traffic speed prediction as a time-series foré&uast recognize the congestion sources of the ring roads in Bgijin
problem, and thus run into the bottleneck gradually. To the best of our knowledge, we are among the earliest
In recent years, with the rapid development of deep learnitg explore how to learn road congestion sources from deep
techniques, more and more researchers in ITS began to adegatning models.
deep neural networks for high-accuracy traffic predictiine  Extensive experiments on real-life speed data of taxis run-
rich studies along this line, however, are mostly concerngghg on the 2nd and 3rd ring roads of Beijing city demonstrate
with traffic flow and congestion predictions [4], [5]. Trafficthe strong predictive power of eRCNN, even with the pres-
speed prediction, therefore, is still an open problem in théce of state-of-the-art competitors. The inclusion oftispa
deep-learning era, with two notable challenges as follows: temporal information of contiguous segments, the intréidnc
o How to characterize the latent interactions of road segf error-feedback neurons to the recurrent layer, and thghwe
ments in traffic speeds so as to improve the predictiyge-training of similar segments, all give a positive botust
performance of a deep neural network? the high accuracy of eRCNN.
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Fig. 1. The framework of the eRCNN model.
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Fig. 2. The structure of the input spatio-temporal matrix.

Fig. 1 shows the framework of the eRCNN model con-

taining five network layers, including the input layelir}, B The CNN-based Feature Extracting

the convolution layerI(c), the pooling layerI(p), the error-

feedback recurrent layef.(z), and the output layerL(). In the eRCNN model, we adopt a CNN-based network

The function of the input layer is to organize the origina$tructure to extract features from the spatio-temporaliinp

traffic speed data as a spatio-temporal input matrix, whidpatrix. The CNN structure contains a convolution layer and

can be processed by the CNN layers of eRCNN. The functi@npoolin_g layer, and then we introduce the two layers in this

of the convolution layer and the pooling layer is to extragubsection.

features from the spatio-temporal input matrix. The fumetof 1) The Convolution LayerThe convolution layer is a core

the error-feedback recurrent layer is to compensate giedic part of the CNN model [6]. The convolution layer connects

errors using predicting results of previous periods. Thipuaiu the spatio-temporal input matrix with several trainableefg,

layer uses a modified rectified linear unit to generate tiéth each being ax i weight matrix. We define thé-th filter

predictions of traffic speeds. akuC). The convolution layer uses tI’W,(CC) to zigzag scan
the input matrix to calculate a convolution neuron matrikeT
(p, q) element of the convolution neuron matrix generated by

A. The Spatio-Temporal Input Matrix the filter k is calculated by
In order to exploit spatial and temporal correlation infarm q L, ¥ pia.at
tion, we construct a spatio-temporal input matrix in theunp ot =0 | bkt Z Zwk mPTRETY @
x=0y=0

layer. Given a road segment we define the traffic speed of
the segment at the timet asv, ;. When we use the proposedwhereb,, is a bias for the filtek, w; ¥ is the(z, y) element of
model to predictv, ;41, the spatio-temporal matrix for the W< mpr+e.a+v is the (p + x, ¢ + y) element of the spatio-

input layer is defined as temporal matrixV, ando(-) is a sigmoid activation function
_Us—m,t VUs—m,t—1 = °° 'Us—m,t—n_ defined as: 1
. . . @)=
Vs—1,t Us—1,t—1 "*° Us—1,t—n More details about the implementation of the CNN'’s convo-
V= vey Vg t—1 Ustem | - (1) lution layer could be found in [7].
Us+1,t  Ustlpt—1 “°°  Ustlt—n 2) The Pooling Layer:The pooling layer is another impor-
: : : tant component of the CNN model, which is used to reduce
the dimension of the convolution neuron matrix through an
| Us+m,t Us+m,t—1 **°  VUstm,t—n |

average down sampling method. In the proposed eRCNN
As shown in Fig. 2, the column vectaer; contains traffic model, the pooling layer divides the convolution neuronrirat
speed data of all the segments in a range thasegments into j x j disjoint regions, and uses the averages of each region
upstream and downstream of the segmeat the timet, and to represent the characteristic of the convolution neuians
the row vectow . contains traffic speed data of the segmentthe region. Through the processing of the pooling layer, the
from timet to t—n. In this way, the input matri®% contains all dimension of the spatio-temporal matrix is reduced as about
the speed information that is spatially and temporally eglja  1/(j x j) of its original size. The output of the pooling layer is
to the variate to be predicted, i.@, 1. a feature vector generated through vectoring the down saimpl



convolution neuron matrix, which is denoted ps previous steps together in the same group of neurons as in
traditional RNN. On the contrary, the input is connectea int
separate neuron groups. This is because the current indut an

An important characteristic of traffic speed data is the pbruthe recurrent input in our model have different charadiiess
change of speed within a short time period. For example,
during the beginning 30 minutes of morning peaks, the traffid: The Output Layer
speed of the Beijing ring roads could drop from 70km/h to Considering the error-feedback recurrent layer, the dutpu
30km/h; while after a rear-end collision traffic accideritet neuronsr is then used as an input, and the output layer
traffic speed could drop from 50km/h to 20km/h. In generagienerates a final prediction value as
it is hard to predict the traffic conditions with these abrupt

; o - (OR) ((R) (OBE)p(E) 4 p(0)

speed changes using traditional neural network structimes 0o=0 (W e+ W + b ) ’ (8)
this way, we introduce an error-feedback recurrent layer \t/vqwerew(om, w©F) andb(©) are the weights and bias of the

improve prediction performance of our model in the abovc()autput layer. In the output layer, we adopts a modifiad.U

C. The Error-Feedback Recurrent Layer

scenarios. : L . L .
function as the activation function, which is defined as
In the error-feedback recurrent layer, a group of neuroas ar
connected with the feature vectprthat is generated by the 0 if <0
pooling layer. Thek-th neuronry is fully connected with all ox) =Lz if 0<z<1. 9)
the elements op through a sigmoid activation function, i.e., 1 if 2>1

T‘;(fR) =0 (W;ER)P + b;iR)) ) (3) The output of Eq. (8) can be regarded as a linear combination
®) ; _ _ of the traffic speed prediction (generated by the input of cur
wherew, ™ is the connection weight vector for the neurgn  rent step) and the error compensation (generated by prviou
and b,iR) is the bias. steps).

In the traditional RNN model [8]r) still needs to be Because the output of Eq. (9) is in the range of [0, 1], we
connected with the hidden layer neurons of the last prettictire-scale the traffic speed of road segments into the same.rang
steps, i.e., According to the actual situation of urban traffic, we addyat t
following reflect function to re-scale the traffic speed data

herer(t—1) is th tor of the— 1 step, andiy, i L, [e>80lm/h
wherer(t— 1) is the neuron vector o step, andw, is ) s0—a -
the corresponding wight vector. However, this network stru Wr) =9 5 ?f @ € [10,80] km/h. (10)
ture does not consider the prediction errors, which is iddee 0 if & <10 km/h
useful in the scenarios of abrupt speed changes. Spegificath fact, in order to keep the input and output at the same
if we have the information about the prediction errors at thgcale, the traffic speeds in the input spatio-temporal mafri
previous steps, we can design a model to compensate #pe also re-scaled by the function in Eq. (10).
prediction error at the current step.

In order to overcome the limitations of RNN, we introduce
a group of error-feedback neurons in the recurrent layee. TA. Parameters Training
value of thek-th error-feedback neurar}” at thet prediction ~ The parameters need to be trained in the eRCNN model
step is defined as: include the weight matrix séW(©) and the bias sei(©) of
the convolution layer, the weight vector set$™), w(F) and
the bias set$(/), b(E) of the error feedback recurrent layer,
the weight vectow (@) = [w(O%); w(OF)] and the bia$(©)

(E) ; ; (B) . . .
where b~ is a bias,w; " is a weight needs to train. The o o0t layer. For the sake of simplicity, we introduce
vectore(t — 1) in Eq. (5) is a prediction error vector deflneq0 represent all the parameters

as

r,iR) (t) = sigmoid (W,&R)p +wir(t—1)+ b,iR)) , @

I11. NETWORK TRAINING

r,(cE) (t) = sigmoid (W](CE)e(f/ -1)+ béE)) , (5)

0= {W(O) B w(E) (0) (@) p(R) p(E) (O]
ot) = [yt = 1)~ o(t = 1).....y(t = 1) ~o(t = 1)}, (6) { j a1
wherey(t — 1) is the real traffic speed at the step- [, and The parameter training is achieved by a mini-batch stochas-
o(t — 1) is the predicted speed at the step (. tic gradient descent (SGD) method. For a road segment, the
The output of the error-feedback recurrent layer is a corobjective of parameters training is to minimize the squared
bination of the regular neurong® and the error-feedbackerror for all the training samples, i.e.,
neurons-(®) i.e., 1 ,
L=- — o). 12
r = [r(®), p(2)] % 5 zk: (Yx — o) (12)
In the error-feedback recurrent layer, we do not connelet the mini-batch SGD, the training samples are divided into
the input of the current step and the error-feedback of tkeveral mini-batches. For a mini-batch, we calculate thiggba



derivatives ofL with respect to all the parameters, and thefilgorithm 1 The segments clustering algorithm.

update the parameters using the following equation, Require: A segment sefS = {s1,s9,...,5,} that includes
oL m segments of a road. A Pearson correlation coefficient
0+ 06— azg (13) thresholdP.

1: Initialization : The segment clustef;, and: = 0.
2: while not all segments in the sét are clusteredio
3.  sp < a segment that is not clustered.

The partial derivatives of. to the parameters are calculated 4~ Hi < {so}, n 1. _ _
by the error back propagation (BP) algorithm. For a minehat 5 S» < @ segment that is contiguous with the segments

wherecx is an adjustable learning rate.

with m samples, the partial derivatives &f with respect to in Hz
the output layer parameters(©) andb(©) are 6. while &3¢y Pearson(ss,s) > P do
7: H; + {H;, sz}, n<n+1.
_OL - 1 Z d(o)(ﬁ)[r(R);r(E)L 8: s, < a segment that is contiguous with the segments
aw(O) m 14 in Hi-
oL 1 0) (14) 9: end while
50 = - 2 W), 100 i+l
" 11: end while
where d(©) (t) is the error propagated from the output layen2: Output: The segment clustetdy, Hy, ..., H;.

at the prediction step. For a given road segment, we define
o(t) as the prediction output at the stepand y(¢) is the
corresponding real traffic speed, and th#f (¢) is calculated feedback recurrent layer is calculated as

d©(t) =6 (o(t)) (y(t) — o(t)) = > WP dP (), (15) ™ m ok
k

where the functiord(x) is with a form of

m

The partial derivative of weight sd8V () and bias seb(®)
in the convolution layer is calculated according to the déad
5(2) 1 if0<z<1 (16) CNN BP algorithm [7], which will not be elaborated here.
xTr) = .
0 fxr=0o0rl B. Pre-Training and Fine-Tuning eRCNN
Since a road is divided into several segments, different
segments may have different traffic speed variation pagtern
Thus, we need to train special model parameters for each
‘7"1(:3) _ [wl(cE)(l)v w,(f)(l)], (17) Segment. Howevgr, in Fhe r_eal situation, the training dqtaa_f
specific segment is limited in the speed samples. If theitrgin
and dffE)(t) is the error propagated from the prediction timelata is not enough, the eRCNN model may suffer from over
t+1tot+1, e, fitting problem. In order to prevent the over fitting problem

In the second term of the Eq.(153/,,(€E) is an inverted form
of the weight vectonw( ) , L.e.,

(B) 1y 14(E) (E) and take full advantages of the training data of all the road
4.7 =7+ 1), (D), (18) segments, we develop an approach to cluster road segments
For a given timet, d](c@ (t) is calculated as as several subsets, and use gll the speed data of the segments
5 o 0B (B 5 in the same subset to pre-train an eRCNN model.
dé )(t) = cl,(c )(t)w,(c )r,(c )(t)(l - r,(C )(t)). (19) The clustering algorithm used here is a Pearson correlation

coefficient based algorithm. For a road segment paiand
sj, the Pearson correlation coefficient is calculated as

Moreover, we calculate the partial derivatives bfto the Cov(vis, Vi)

weight parameters of the error-feedback recurrent layer as Pearson(s;, s;) = Vv Vare,)’ (24)
(E) Z d(E) —1), (20) wherev; . andv; . are traffic speed series of the road segments
ow,, s; and s;, respectively. Using the Pearson correlation coeffi-
and cient as a similarity measurement, the clustering algorith
Zd (21) Presented in Algorithm 1. To be more specific, Algorithm 1
awk - clusters road segments that are contiguous and with Pearson
(R) ) _ correlation coefficients higher than a threshold as a same se
whered,’™ at the timet is calculated as The segments in the same set share their traffic speed as

dB () = d© (1w ©P 2B (11 — B 1), 20y @ pre-training data set. Throug_h this approach, we transf_er
p ) =47 (w0 = @) (22) knowledge of other segments into the model of a certain
The partial derivatives to bias parameters for the erragegment.



TABLE |

THE FORMAT OF FLOATING CAR RECORDS
80r

[Field [ Definition | <

ID The unique ID of a taxi. < 60}

TIME The sample time stamp of this record. 8

LON The current longitude of the taxi. & 40

LAT The current latitude of the taxi. £

DIR The current driving direction of the taxil, ,? 20-

STATUS | Whether the taxi is carrying a passenger.

$00 400 800 12:00 16:00 20:00 24:00
Furthermore, using parameters of the pre-training model as

the initial values of the parameters, we further fine-ture thrig. 3. The traffic speed fluctuations of a road segment in tieerihg road.

eRCNN model for each segment by utilizing the local spatio-

temporal data. Specifically, we divide the 24 hours of one

day into seven time ranges, i.e., [0:00, 6:00], [6:00, 9:OollnThe data set u_sed in this experiment was coIIecteq from
[9:00, 12:00], [12:00, 15:00], [15:00, 18:00], [18:00, @], e 25 weekdays in November 2013. The data of the first 20

and [21:00, 0:00]. For a segment in a certain time range \)o@ekdays were used as the training set, and the remaining five
fine tune the special parameters by using the speed datd'@yS as the test set.
the segment in the given time range based on the pre-traigedg, g 1uation Metrics

model. We adopt three widely used metrics to evaluate the perfor-
IV. EXPERIMENTS mance of prediction models, including Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Root
A. Data Description Mean Square Error (RMSE), which are defined as follows:
In our experiments, we tested eRCNN over two very impor- 10
tant roads in the Beijing city, i.e., the 2nd ring road and the MAE = —~ > fvi =il
=1

3rd ring road. These two roads encircle the center of Beijing
According to the Beijing Municipal Commission of Transport
the average traffic flow carried by the two roads goes beyond
200,000 cars every day, which occupies about 10% of the total
traffic flow in Beijing downtown arela

The length of the 2nd and 3rd ring roads are 32 and 48 km,
respectively. We set the average length of each road segment
be 400 meters, which results in 80 and 122 road segments\idrerev; is the observed speed, andis the predicted one.
the two roads. Moreover, the traffic speed of a road segment
is collected from the GPS terminals of taxis driving on th&- Benchmarks
segment. In Beijing, about 60,000 taxis are called floatmmgc We compared the performance of our model with the
which are installed with GPS terminals and used as floatifigllowing five benchmark methods: 1) Auto Regression In-
senors to collect traffic speeds of urban roads. The datadecdegrated Moving Average (ARIMA) [1]. 2) Support Vector
collected from floating cars contain information about fineet Regression (SVR) [10]. 3) Stacked Auto Encoders (SAE) [5].
stamp, location, speed, direction, and status of a driviixg t 4) 1D Convolution Neural Network (1D-CNN). The network
as specified in Table I. Such records are collected everytmingtructure of the 1D-CNN is the same as the CNN part of
for a driving taxi, and the total data size generated eachisiayeRCNN, but the input matrix reduces to the time series of the
about 5GB. In the experiment, we exploit a road-map matchitigffic speeds of the segment to be predicted. 5) Convolution
algorithm proposed in [9] to match the floating car record¥eural Network (CNN). The network structure of the CNN
into urban roads, and further calculate the average speedoefichmark is the same as eRCNN, except that the CNN
segments in the 2nd and 3rd ring roads. In the data collectifgmoves the error feedback procedure. Note that 1D-CNN
process, the traffic speed of a segment is updated everysdused as benchmark to test the effectiveness of the spatio-
minutes. Fig. 3 shows an example of one-day traffic spetg&imporal input matrix for eRCNN, and CNN is used to test
variations of a road segment in the 2nd ring road. As wbe performance of the error feedback scheme of eRCNN.
can see from the figure, the average traffic speed fluctuates
dramatically in a day. D. Overall Performance

We compared the performance of eRCNN with the bench-
Lhttp:/www.bjjtw.gov.cn/ mark methods in two different experimental scenarios. m th
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Fig. 5. Prediction performance on the 3rd ring road with iragyperiod lengths (Scenario 1).

first scenario, we predict the the average traffic speed oftteat eRCNN achieves the best performance compared with the
road segment in a following period, with the length varyingtate-of-the-arts. The inclusion of spatio-temporal infation
from 5 to 30 minutes. Fig. 4 and Fig. 5 show the comparativé contiguous segments and the error-feedback neurongto th
performances of eRCNN and the benchmarks for the 2ndtwork structure is the key for success.
and 3rd ring roads, respectively. As shown in the figures, the
prediction error of eRCNN i; obviously smaller than ARIMA,E_ Performance for Individual Road Segment
SVR, SAE, and 1D-CNN in terms of the three evaluation
metrics. Although the performance of CNN is comparable To further demonstrate the advantages of eRCNN, we took
to eRCNN, the prediction error is still greater than eRCNNa closer look at the prediction errors of every road segments
Generally we can see that the prediction performance bezoréth CNN, SAE and SVR as benchmarks. Fig. 8(a) shows
better when the length of the prediction period increasdfe comparative performances on each segment of the inner
Intuitively, this may be due to the fact that the traffic speéd ring (in clockwise direction) of the 2nd ring road. In the
a segment becomes smoother when the average period legg@eriment, the prediction period is set as 5 minutes and the
increases. The results indicate that eRCNN can effectivéfjferval is 0 minutes. As depicted in the figure, the predicti
extract the spatio-temporal features from the traffic sptsael  errors for different segments indeed vary greatly. We can se
of contiguous road segments, and the introduction of tharerrthat for all the prediction methods, the predictability ot
feedback recurrent layer is indeed positive for eRCNN. ~ segment #30-#50 is better than other segments in general. On
In the second scenario, we aim to predict the traffic spedite contrast, the predictability of segment #7-#15, #28;#2
of a segment after a given time interval, with the intervand #62-#80 is much poorer.
length varying from 0 to 50 minutes. Fig. 6 and Fig. 7 As shown in the figure, the performances of SAE and SVR
show the prediction errors of eRCNN in comparison with théegrade severely for the low predictability segments, waer
benchmarks for the 2nd and 3rd ring roads, respectively. A& performances of eRCNN and CNN remain stable across
shown in the figures, eRCNN achieved the best performanedisthe segments. Fig. 8(a) shows the similar experimental
compared with other methods. Note that since the correlaticesults for the inner ring of the 3rd ring road, with the same
between the traffic speed of two adjacent periods decreasetiings to the time period and interval. To sum up, the tesul
as the interval increases, the prediction performancesrbec in Fig. 8 indicate the robustness of eRCNN empowered by
worse with the increase of the interval length. the learning scheme from the spatio-temporal speed mdtrix o
In summary, from the above experimental results, we fintearby segments.



10 4 0 4
s ) g
7 w 0.3 4 £
3 ) g ) o
W < 7]
g s
= 5. 0. 4
eRCNN eRCNN
2.5 : : 0. : : :
0 0 20 30 4 50 0 20 30 4 50 0 0 20 30 4 50
Interval length (min) Interval length (min) Interval length (min)
\—)eARlMA —7— SVR —9— SAE —8— 1D-CNN CNN -e-eRCNN\ \ —— ARIMA =57 SVR —9— SAE —B— 1D-CNN CNN -e-eRCNN\ \+AR|MA —7— SVR —9— SAE —8— 1D-CNN CNN -e-eRCNN\
(a) MAE Comparison (b) MAPE Comparison (c) RMSE Comparison
Fig. 6. Prediction performance on the 2nd ring road with vagyinterval lengths (Scenario Il).
4 15. 7
10.
€ ? c12
£ { §10 f
g 7 ?
g S
Z 50 7
eRCNN eRCNN
5.
25 L L 0]0 L L L L
0 0 20 30 4 50 0 20 30 4 50 0 0 20 30 4 50
Interval length (min) Interval length (min) Interval length (min)
\+AR|MA —7— SVR —9— SAE —8— 1D-CNN CNN -e-eRCNN\ \ —— ARIMA 57 SVR —9— SAE —B— 1D-CNN CNN -e-eRCNN\ \+AR|MA —7— SVR —9— SAE —8— 1D-CNN CNN -e-eRCNN\
(a) MAE Comparison (b) MAPE Comparison (c) RMSE Comparison

Fig. 7. Prediction performance on the 3rd ring road with wagyinterval lengths (Scenario ).

125 [~ - SVR---SAE— CNN —e—eRCNN| 12. [~ - SVR---SAE— CNN—=—eRCNN|
h ‘ : I !
10 i 10 0y
< P ::i \ R 7 I
£ 75 .f | ,; ‘\ : "."‘u"-‘.”,"M £ 7.5 }
< iyt ’ ‘ <
= = 5.0ff

1 10 20 30 40 50 60 70 80 1 20 40 _ 60 80 100 120
Segment ID Segment ID

(a) The 2nd Ring Road (b) The 3rd Ring Road
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to normal before 21:00. In general, the traffic speed changes
Here, we study the prediction performances of eRCNN ruptly during both of the two periods. As can be seen from
different time intervals of a day with substantially difiet ¢ figure, our proposed eRCNN successfully captures the
traffic conditions. We randomly select a road segment Icui:atgbrupt changes in speeds and_ the curve of _predlctlons gxact
in the inner loop of the 2nd ring road as the targeted samp :atches the re_aI values of traffic speeds, while the C_NN model
and predict its traffic speeds during the time interval fro oes not effectively follow the abrupF changes of tra fricese
18:30 to 21:30 on November 24, 2013. The prediction peri Ci'ns well demonstrates the necessity of introducing thererr
eedback scheme to the recurrent layer of eRCNN.

is set as 5 minutes and the interval is set as 0.
Fig. 9 demonstrates the real traffic speed and the predictiorio further demonstrate the statistical property of thererro

results from eRCNN and CNN. As can be seen from Fig. ¢edback scheme, Fig. 10 plots the cumulative distribution
from 19:00 to 19:30, the traffic recovers from the last traffitunctions of the absolute prediction error in the 19:00309:
jam of the night peak. While around 20:20, the traffic spediine period of all the testing days and all the road segments
decreases again due to a small accident, and the trafficeecofor eRCNN and CNN, respectively. The prediction period is

F. Performance with Time Variation
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Fig. 9. Traffic speed prediction with time variation. Fig. 11. lllustration of the effectiveness of pre-training

V. IMPORTANCEANALYSIS FORROAD SEGMENTS

In this section, we introduce a very useful application of
golg JUPTECL our traffic speed prediction model: the importance analysis
E for road segments. In order to explain the concept of segment
8 p p
S06 importance, we first give a formalized definition of thmlu-

2 : encebetween segments. For a segmgnthose traffic speed
504 :ecili'jg;?r:"'” is influenced by the traffic speed of the segmente define
§ 0.2 -=-=-eRCNN-20min | Vs = f(v) (25)
- - -CNN-20min J e
00 15 where v; and v; are traffic speeds of segmentand j,

respectively. Based on the relations described by Eq. #5),
define thanfluenceof segment to segmeny as the derivative
of v; to v, i.e.,Ve>0

5-min and the intervals are 0-min and 20-min, respectividy. df(v) . fu)—flui—e

shown in Fig. 10, the prediction error of eRCNN is obviously Li(j) = % = lim 5( )- (26)
smaller than CNN, which indicates the great improvements ’

from the error-feedback scheme in eRCNN, especially Whgr?r the eRCNN model, the netyvork structure s a fl.mCﬁOﬁ
facing traffic fluctuations. f(V), which models the relations between predicted speed

In summary, the experimental results testified the effeetiv® of a segment and real traffic _speeﬁ’s of its contlguous_ .
ness of introducing separate error-feedback neurons t(NN?Csegments. Because eRCNN achieved very accurate prediction

’ . .
when predicting traffic speeds with abrupt changes. performgnce, we can u% t0 approximate the influence of
the contiguous segments to the predicted segment.

The calculation ofg—{’, is given as follows. According to
Eq. (2), in the convolution layer, the partial derivativetbé
As discussed in Section III-B, we develop a pre-traininglement(p, ¢) in the neuron matrix for thé-th filter to the
method by clustering the road segments. To evaluate th@ut matrixV is
effectiveness of this method, we compared the prediction Py
results of eRCNN under three conditions, i.e., predictidtin w b= (1 - cﬁ’q)W,(cc). (27)
pre-training, prediction without pre-training, and predin ov
with only pre-training, in the time period between 6:00 t& the pooling layer, the partial derivative of the pool auttp
21:00. We set the prediction period to 5-min and the intervalty’ 0 the matrixV' is an average ofc;?/0V, i.e.,
to 0-min and 20-min, respectively.

5 10
MAE (km/h)
Fig. 10. CDF of predictive error during 7:00-7:30.

G. Performance with Weight Pre-Training

21 2j

7,7 m,n
As shown in Fig. 11, the prediction results without pre- Opy _ 1 >y e~ (28)
training and with only pre-training fluctuate drasticalBar- ov 4 m=2i—1n=2j—1 ov

ticularly, .during. the morning peak (7:00-9:00) and evening,. orror feedback recurrent layer contains two kinds of
peak (17:00-19:00), the prediction errors for the two Ca&8es o, 1ons: the regular neuron and the error-feedback neEicon.

much higher than that of other time periods. Nevertheldss, the sake of reducing complexity, we ignore the influence of

pred|ct|on results with pre-t_ra!nmg remain staple_qcmsﬁwe error feedback neurons and only consider the regular neuron
time ranges, and the prediction errors are S|gmﬂcamtlyeiowwe define an intermediate variable as

than the other two cases. This well demonstrates that eRCNN i
is greatly enhanced by the pre-training scheme even fahing t Pk _ » L 0Py (29)
drastic speed changes during the morning and evening peaks. ov el Lk v
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where wﬁ_)k is the element ofw( that corresponds to and O-min interval prediction experiment results to caitel
p';'cvj_ Accc;fding to Eq. (3), the complete form of the partiathe importance of the inner and outer loop segments of the two
derivative for a regu|ar recurrent neuron is given by ring roads. The importance of the segments is demonstrated
op(R) 9 in the city map of Beijing as shown in Fig. 12. Obviously,
T B (1 — p(R) 9Pk (30) the high important road segments are mostly located near the
ov P ov corners of the ring roads, for both of the outer and inner$oop

This is possibly because the entrances and exits of the ring
roads are concentrated near the corners, which also connect
other important roads. For example, the northeastern corne

T : )

orm [aTER) ar%"‘)] of the two ring roads connects one of the most important

We define the partial derivative vector with th€ regular
neurons in the recurrent layer as

= e (31) highways to leave Beijing and also the expressway of Beijing
ov ov ov airport, the northwest corner of the 3rd ring road connects

output variables to the input matrixv’ as and the northwest corner of the 2nd ring road connects with
the North Railway Station. In a nutshell, the results exghjic
do or(f) - . . X
g0 _ 5(0)“,(03) . (32) detect the key congestion source in the ring roads, which can
ov ov help the municipal administrators to make better decision i
According to definition of the input matri¥ in Eq. (1), the urban planning and resolving the traffic congestion.
element (1,1) ofg—\‘), is gfff“f which denotes the derivative VI. RELATED WORK

of predicted speed of segﬁ%eﬂat timet + 1 to the speed of
the segment — m at time¢. According to the definition of
segment influence, we approximately calculate the ianuen%P
of the segment — m to s at timet as €

A widely used method for traffic speed prediction is the
toregressive integrated moving average (ARIMA) mod-
[1]. After the birth of the BoxCJenkins time-series an-
alyzing method [11], many ARIMA based variants were

t—n

004 41 proposed to improve the traffic predicting power, including
Ls—m(s) = Z m : (33)  Kohonen-ARIMA [12], ARIMA with explanatory variables
k=t? o (ARIMAX) [13], and seasonal ARIMA (SARIMA) [14].
We define themportanceof the segmenk as its influence to  In recent years, great attention is being paid to supervised
all segments in the same road with it, i.e., learning methods for traffic prediction. Support vectorresg
sion (SVR) and artificial neural networks (ANN) are the two
Importance;, = ;;Ikvt(s)' B9 kinds of particular interests. For instance, [2] proposQVR

based method to predict traffic speed. [15] proposed an@nlin
According to this definition of segment importance, the segzarning weighted support-vector regression (OLWSVR) to
ments with high importance have high influence to the traffisredict short-term traffic flow. As to ANN, Ref. [3] applied
speeds of other segments. These high important segmegtficial neural networks to predict the speeds on two-lane
could be considered as sources of traffic congestion. rural highways. [16] proposed a fuzzy neural network to
In order to verify the effectiveness of the above-mentionethalyze road traffic. In [17] and [18], a genetic approach
importance analysis method, we again adopt the 2nd and &droposed to optimize neural networks for short-term-traf
ring roads as the demonstrative examples. We use 5-mincberiic flow prediction. Other learning based methods include



the distribution enhanced linear regression [19], the dndd [5]
Markov model based prediction method [20], and the Gaussian
process-based method [21]. The predictability of roaditraf [6]
and congestion in urban areas is studied in [22].

With the booming of deep learning techniques [23], [24],
some ITS researches begin to adopt deep neural netwart
models as an effective traffic prediction tool. Ma et. al.][25
adopted a RNN-RBM model to predict congestion evolutiori8]
in a large-scale transportation network. [4] proposed gde
belief network model with shared representation for traffic
flow prediction, while [5] adopted a SAE model for this
purpose. [

To further enhance predictive performance, involving his
torical and spatio-temporal information becomes a pramgisi
trend in traffic prediction. For instance, Ref. [26] claime?ll]
that traditional prediction approaches that treat traffatad
streams as generic time series might fail to forecast traffi]
during peak hours and in case of events, and proposed the
H-ARIMA+ method to incorporate historical traffic data for
traffic prediction. In [10], spatio-temporal trends werd¢ran [13]
duced to the SVR model to facilitate large-scale traffic spee
prediction. In [27], a non-negative matrix factorizatioased
latent space model was introduced to predict time-varyiht#]
traffic in networked roads in a large spatial area. [28] pegub
a tensor based model to predict travel-time through exptpit
spatio-temporal information. [15]

Summary:Despite of the abundant research in traffic pre-
diction, to our best knowledge, our work is among the edrlies
to allow integrating both spatio-temporal and predict@mer [16]
information into deep neural networks for traffic speed fred
tion of high accuracy. Moreover, our study sheds light on how
to learn road segment importance from deep learning modgis]

10]

VIl. CONCLUSION

In this paper, we proposed a novel deep learning meth g
called eRCNN for traffic speed prediction of high accuracy.
An error-feedback recurrent covolutional neural netwask i
carefully designed so as to incorporate the spatio—tenhpo?&?]
speed information of contiguous road segments as well as
to perceive the prediction errors stemming from the abrujab]
fluctuations of traffic speeds. Experiments on real-wowddfitr
speed data of the ring roads of Beijing city demonstrate
the advantages of eRCNN to the excellent competitors. [21]
particular, we illustrate how to explore the congestionrees
from eRCNN.
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